
RADAR SCATTERING AND ANTENNA MODELING ON

SCALABLE HIGH PERFORMANCE COMPUTERS

Tom Cwik, Cinzia  Zuffada,  Daniel S. Katz and Jay Parker

Jet Propulsion Laboratory

California Institute of Technology

Pasadena CA 91109

1. INTRODUCTION

The application of advanced computer architecture and software to a

broad range of electromagnetic problems has allowed more accurate

simulations of electrically larger and more complex components and systems

than had been previously available. Design and analysis in radar scattering

and antenna systems can directly and repeatedly benefit from the largest and

fastest computer architectures that become available. This evolution of

computational methods and their use is expected to continue unfettered into

the future. The work in this chapter draws from the Parallel Applications

Technology Program at the Jet Propulsion Laboratory. Initially the work in

parallel computational electromagnetic at the Jet Propulsion Laboratory

explored the application of early distributed memory parallel computers to

existing algorithms. This work continued with the development of methods for
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modeling the scattered or radiated fields from objects with penetrable or

inhomogenous materials, and with geometries that required modeling at the

sub-wavelength scale size. To this end finite element methods were

developed, purposely crafted for use with high performance, large memory

parallel computer systems. The guiding principle of this work was the

development of methods that limited approximations at the theoretical,

formulation stage, and implemented algorithms which allow generality of

application when using high performance parallel machines. The sections that

follow outline the development, implementation and results of these activities.

Il. ELECTROMAGNETIC SCAITERING  AND RADIATION

The problem of calculating electromagnetic fields scattered from a

target, or radiated from an antenna can be solved by various means. When the

object is composed of inhomogenous penetrable materials or has geometric

variations on a fraction of a wavelength, finite element methods are

advantageous. A finite element method calculates fields in a volumetric region

in and around the object, accounting for material parameters and shape. Far

fields are then found easily by integrating

computational boundary.

Though the scattering and radiation

equivalent sources on the

problems differ greatly in

application, the fundamental

location and description of

formulations are very similar, differing only by the

the source. After a formulation of the general

problem is developed, the source term is modeled appropriately and inserted
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into the system of equations. For scattering problems, the source is external to

the scatterer, traditionally a plane wave having a specified polarization of the

electric and magnetic fields, incident on the scatterer from some direction. For

antenna problems, the impressed current source exists at some specified

point on the antenna. This source is appropriately modeled, typically by a

known field distribution impressed on a surface, or through volumetric currents.

The remainder of this section presents the formulation for a finite

element solution to the scattering and radiation problem. Initially the scattering

problem is developed, with the source terms for radiation briefly outlined. The

work in this section draws on [1 ,2,3] wherein additional material is presented

and computational results for scattering and radiation geometries are found.

A. Formulation Of The Problem

The scatterer and surrounding space are broken into two regions: an

interior part containing the scatterers and freespace region out to a defined

surface, and the exterior homogeneous part (Figure 1). To efficiently model

fields in the exterior region, the surface bounding the interior is prescribed to be

a surface of revolution. The following formulation first outlines the interior finite

element representation, then the exterior integral equation model, and finally

the coupling of fields at the boundary separating the two regions.
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Figure 1. Geometry of computational clomain showing interior ancl exterior regions.

The Interior Region

In the interior region, a finite element discretization of a form of the wave

equation is used to model the geometry and fields. Applying a form of Green’s

theorem–multiplying the wave equation by a testing function 7, integrating over

the volume and using the divergence theorem–a weak form of the wave

equation is obtained. This form includes a surface integral which provides for

a boundary condition relating the field inside the selected volume to the field on

the boundary, and thus provides a link to the outside field

~is the magnetic field (the ~-equation is used

~-equation  can be similarly developed), ~is a

denotes conjugation, and ~ x i is the tangential component of ~ on the surface

in the development; the dual

testing function, the asterisk
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S (dV).  In general, dVrepresents  all boundaries of the volume, including the

surface of revolution and any perfect conductors. The surface integrals over

the perfect conductors are identically zero since their integrand includes the

tangential electric field E x fi. Equaticm (1) therefore represents the fields

internal to and on the surface S. These fields will be modeled using a set of

properly chosen finite element basis functions. In Equation (1),  E, and If, are

the relative permittivity  and permeability respectively, and kO and ??O are free-

space wave number and impedance, respectively.

The Exterior Region

In the formulation of the integral equation, fictitious electric (~= i x ~)

and magnetic (~= –; x ~) surface currents, equivalent to the tangential

magnetic and electric fields just on the exterior of the boundary surface, are

defined on the boundary. These currents produce fields in the exterior region

which are the scattered fields. The sum of the scattered and the incident field

results in the total field everywhere outside the boundary surface. On the

boundary itself, this sum is equal to half the total field. The scattered fields are

obtained from the tangential currents via an integral over the boundary using

the free-space Green’s function kernel. Two equations are obtained for the

electric and magnetic fields on the boundary–the electric field integral equation

(EFIE) and the magnetic field integral equation (MFIE),  respectively. A linear

combination of the two with a constant weighting factor ~ results in the



combined field integral equation (CFIE).  The general form used in this

formulation is

z,,[m?o ]+ ~, [J]= Y (2)

where % and ‘J are the integro-differential operators used in defining the

CFIE,  and V, represents the incident field.

Enforcing Boundary Conditions

The previous two sections have outlined field representations for the

interior and exterior regions. [n the interior region, boundary conditions at any

material interface, including perfect conductors, must be enforced by a proper

application of the finite element basis functions. At the artificial surface of

revolution separating the interior and exterior regions, boundary conditions on

the continuity of tangential field components must be enforced.

Initially, four equations are written for the three unknown field quantities

of interest. The first unknown is the magnetic field internal to the volume v. The

other two are the electric and magnetic surface currents, 7 and ~, on the

boundary.

The four equations are found from the finite element equation (l), the

integral equation (CFIE) relating ~ and M- currents to the incident field (2), and

a set of equations enforcing the continuity of R and ~ across the boundary.



Continuity of the magnetic field across the boundary is enforced in a weak

sense

N fixn--qo (fixu$)ds=o (3)
w

where U is a testing function. This is an essential boundary condition and

must be explicitly enforced. Continuity of the electric field across the boundary

is made implicit in the finite element equation in the surface integral term i x ~,

and is termed a natural boundary condition

NEX; -. M) OT’*[)LY=()
(3V

This equation is combined with (1) to produce

?Io--I ]J-qvxlT)o(vx  7*)- k’prT70T*  ,1,- ii7. T* ,/s==0.
jko E, w

v“

(4)

(5)

Equations (5), (3) and (2) constitute the system of equations representing

fields in all space in and about the scatterer.

B. Why This Formulation Addresses The Problem

As outlined above, the finite element method of solving for scattered

fields is chosen to capture fine-scale geometry or to model inhomogenous

materials in and about the scatterer or antenna. This is accomplished through
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the volume integral in (5); the material parameters everywhere within the

computational volume are modeled, including any perfect conducting surfaces.

The magnetic fields within the volume are then calculated in the presence of

the materials without approximation, other than that of the numerical

discretization and numerical solution. The mesh is ‘(pulled” out from the

scatterer or antenna to encompass the volume contained within a minimal

surface of revolution that surrounds the scatterer or antenna. This surface, and

the integral equation representation of the fields on that surface, are used to

accurately model the radiation condition for fields scattered or radiated from the

object. This formulation allows an accurate implementation of the radiation

boundary condition which is essential for a high fidelity solution of the fields.

Additional, the choice of a surface of revolution allows for a more

numerically efficient integral equation as opposed to using a general surface.

Indeed, on a surface of revolution the unknowns can be described as having a

variation along the surface generator totally independent of that along the

azimuthal coordinate. The azimuthal variation is expressed in terms of a

Fourier series with orthogonal harmonics. As will become clear later, these

features give rise to impedance matrices of order lower than those

corresponding to a surface of general shape, for the same size.

Ill. FINITE ELEMENT MODELING

The above theoretical formulation is discretized into a complete finite

element model, ultimately creating a large system of equations that is solved.
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The fc)llowing  sections outline the internal finite element model and the surface

integral equation discretizations.

A. Discretization  of the Problem

The three equations (5), (3) and (2) are discretized using appropriate

sets of basis functions. In the interior region, tetrahedral, vector edge elements

(Whitney elements) are used. On the bounding surface of revolution, a set of

functions with piecewise linear variation along the surface of revolution

generator, and with an azimuthal Fourier modal variation are used.

The Finite Element Model

An ensemble of elements filling the interior region, excluding any perfect

conducting objects, is created using a mesh generator. The elements should

accurately represent the magnetic field, the geometry of the scatterer, and the

bounding surface of revolution. Since the scatterer is not a body of revolution in

general, the finite element mesh will extend out from the scatterer to the

surface of revolution. For an accurate model of the fields, tetrahedral, vector

edge elements are used to model ~ [4]

R-(r) = ~,}l,~(r)
1

(6)

where
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Ylt,(~)  = L,(r)  vij(r) - a,l(r)vA,,l(r) (6a)

and a(r) are the tetrahedral shape functions. Testing functions are also

chosen to be the functions W(r).

l“hese functions are

discretized volume integral

used in the volume integral of (5). The resultant

is

T?o— .

XO. L ,
v
[[ 1+VXR)O(VXti7*)-  k2/@O~*  dv=+KH  ( 7 )

E ,

where K is the assembled sparse finite element matrix, and H is the vector of

complex, finite element basis function amplitudes.

An Efficient Exterior Integral Equation Model

To describe the surface of revolution geometry, a cylindrical coordinate

system (P, @,z) is selected for the exterior region, and orthogonal surface

coordinates (t, @) are used on the boundary itself; @ is the azimuthal angle

variable and f is the contour length variable along the generating curve of the

surface of revolution. In the formulation of the integral equation, the equivalent

electric and magnetic surface currents ( ~ and ~) are defined just on the

outside of the surface through the relations
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in which u is the Heaviside function,

[

l, for points outside fW
u = +, for points on W

O, for points inside W

and 1 and K are integro-differential operators given by

u“””]  = j?]. jJ(k&”]+-  Vv’ “ [“””])  g(kolT – 7’1)(/s’
<1 tf

(8)

(9)

(9a)

( lo)

(11)

In (10) and (11) g is the well known Green’s function for unbounded space.

From the above derivations we can write the electric field integral

equation and magnetic field integral equation, respectively, to obtain the ~ and

~ surface currents. They are

(12a)
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(ilx L)[m/ ?), ]+(+-?)O I+iix K)[J]= ?], 7,, (12b)

in which, for the sake of symmetry, the source terms (tangential components of

the incident field) are given as fictitious surface currents ~[ and ti-,. They are

presented in a form that is very similar both in terms of dimensions as well as

vector orientations. The symbol, /, represents the unity operator and is

introduced for notational consistency.

These two integral equations are linearly combined through a weighting

factor cx , and the resulting sum is cast into the compact form given by (2)

where the operators

Zh, Z{(l–fi)(+ I]oilx  I- K)+a(ix L)}

zj={(l-a)l.  +a(+T]ol+fix  K)} (14)

and source term

~ =(1 – a)fi x M; +- Cq,.i, (15)

are used. This formulation of the operators follows from the CICERO code

development [5].
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Using the method of moments, this integral equation is turned into a

matrix equation. The unknown currents M and ~ are expanded in a finite

series of basis functions D on the surface of revolution. The testing functions

are selected identical to expansion functions on the surface of revolution. They

are written as separable functions of f and @ and will have two orthogonal

components  along the ~ and ~ directions. The azimuthal function is the

exponential harmonic exp(.j~z@) (Fourier harmonics). The variation along the

surface of revolution generator is represented by a triangle function T(t) divided

by p(~),  the radial distance from the z-axis. Thus,

(16)

(17)

and both expansion and testing functions are given as

~ “ q(~) ~,,,~tro)d == r (@)— (18)
P(f)

7;(t) is a triangle function spanning the k-th annulus  on the surface of

revolution. Each annulus spans two segments along the generator, each

referred to as a strip. Adjacent triangles overlap on one segment. These

overlapping triangle functions result in approximations to ~ and ~ which are

piecewise linear in f and a Fourier series in @.
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The

equations

orthogonal

original integral equation is transformed into a set of linear

for each of the Fourier modes since the Fourier modes are

and decouple. Thus, in compact form it can be written as:

~w,(z,, RZ)LL u,)+ XL(L mu q = x u,(v, , v) (19)
I), Ill t)!

where m,,,  and j,,, are the complex unknown amplitudes for each Fourier mode.

This is the second equation in the system, representing fields scattered from

the object.

Coupling the Two Representations

The surface integral in (5) and the first component of the integral in (3)

are termed the coupling integrals, since with a convenient choice of the

unknown in the first and of the testing function in the second, they are made to

couple

surface

surface

interior and exterior field representations. The surface S in these

integrals is chosen to be that c)f the surface of revolution. Because the

of revolution is discretized when using these basis functions, the issue

arises of how to represent W on S. Indeed, the

volume is a union of finite element facets. These

outer surface of the interior

facets vary, according to the

order of finite element representation chosen, from planes to curved surfaces.

In general, however, this surface is not identical to the surface of revolution.

Similarly, the surface of revolution is obtained by revolving a generating curve

around an axis, creating a surface whose cross section is circular. However,
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for numerical purposes, the generator itself is not necessarily smooth, but is

piecewise linear. Thus, only in the limit of fine meshing will the two surfaces

coincide with each other.

The finite element function ~ is evaluated approximately on the portion

of surface of revolution projected from the triangular facet of the tetrahedron

onto a strip. This is accomplished by an orthogonal projection of the

tetrahedral facet surface onto the surface of revolution, thus introducing an error

which depends on the size of the tetrahedral facet with respect to the curvature

of the surface of revolution. The coupling term is given by the integral

where, for each integral equation basis and finite element

contributing surface is the union of the projections of a

(20)

testing function, the

triangular boundary

surface onto the proper number of surface of revolution strips

posed cases). Such surfaces are curved triangles, curved

(up to two in well-

quadrilaterals, or

curved pentagons. The evaluation of the integrals was done numerically by first

inscribing the above irregular surfaces into curved rectangles and then by

determining the points inside the region of interest from the knowledge of the

simplex coordinates of the original finite element boundary facet and their

properties at points

discretization of the

of the problem.

inside the facet. These coupling integrals, as well as the

second surface integral in (3), complete the discretization
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The Complete System of Linear Equations

}flaving  introduced the basis and testing functions for the volume as well

as the surface unknowns, substitution into the complete set of equations yields

KCO H

c+ o Z. M =
o z,, ZJ J

where

o
0
vi

(21)

(22)

The symbol ~ indicates the adjoint of a matrix. Note that both K and C are

sparse, ZO is tri-diagonaI, and ~J~l and Z~ are banded. In particular the system

is complex, non-symmetric, and non-Hermitian. The sparsity of the system (21)

is shown in Figure 2 for a case with only several hundred finite element

unknowns. For larger, more representative cases, the number of finite element

unknowns will grow into hundreds of thousands while the number of columns

in C will be several hundred to several thousand.

16



The parallel solution to this matrix equation system is completed in two

steps. Initially H in the first equation in (21) is written as H== -K-lCM  and

substituted into the second

ZK

Zh,

where ZK = –C+K-lC.  This

equation resulting in

Z. M o

ZJ J = vi (23)

relatively small system is then solved directly for M

and J. By solving the system in two steps, the interior solution is decoupled

from the incident field Vi, allowing for efficient solutions when many excitation

fields are present as in monostatic radar cross section simulations.

The relative numbers of unknowns in H and M (or J) makes

calculation of K-IC  the major computational expense. This operation is

the

the

solution of a system of equations, KX == C, where C is a rectangular matrix with

a potentially large number of columns in the case of electrically large

scatterers. The solution is accomplished by using a symmetric variant of the

quasi-minimum residual iterative algorithm. The resulting overall matrix (23) is

treated as being dense, and the solution of this second system is

accomplished via a direct dense LU decomposition,

small.

since its size is relatively
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Figure2.  Scatter plot graphically showing structure ofsystemof

equations. Darkened spaces indicate non-zero matrix entries.

Modeling Source Term for Antenna Modeling

The source being modeled is an unknown field distribution on an

aperture represented by a mathematical surface, one of those bounding the

computational domain. It can be chosen to be the transverse cross section, or

a portion thereof, of a waveguide or coaxial cable ( or many of them, for arrays)

feeding a radiating structure. This option is convenient because a

representation of the transverse fields in terms of waveguide modal functions

with unknown coefficients is known for certain geometries. Such a

representation can then be used as a constraint on the finite-element solution

for the field at the surface itself, as is outlined in the following.

Consider a waveguide directed along the & axis, transitioning  into a

radiating structure, and let SW (~ = O) be the surface representing the aperture (

for example, a complete waveguide cross section or an iris) chosen to
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terminate the computational domain. This means that no mesh exists

this point looking towards the source. For ~ <0 the total tangential fields

beyond

can be

expressed as functions of the incident mode of unit amplitude propagating

along ~ and an infinite number of modes originating at the discontinuity

between the waveguide and the radiating element, propagating or evanescent

along the direction - ~

e,
(24)

In (24) and (25) ;i,~iare respectively the TE and TM modal functions

associated with the waveguide geometry, Z, are the modal impedances and R,

are the unknown modal reflection coefficients. For all the definitions the reader

is referred to [2]. From (25), since the modes are orthogonal

R, = --p,,,, .5, +6.,
T. .

(26)

is obtained, where the Kronecker delta is used.

By making use of (24) - (26) the term fixfi in the surface integral in (1)

can be expressed as

Z X ii= ZoiO  +~Zi  R;Zi

i.(1

(27)
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Therefore, with proper substitutions, the surface integral on SW can be written

as

j2zo T* .iod.s  – ~zi JT’* .MfpL,,, . Z,ds (28)
s,, ;. I SK s.

By imposing continuity between fi,,.  and tangential ~ at SW expressed by the

finite elements, the above expression finally reduces to

it is noted that (29) introduces additional

corresponding to the unknown coefficients

particular, (29) shows that each unknown

(29)
s,,

terms to the volume integral of (5),

of the finite element edges on SW in

couples to all others on SW through

the modal function xi. After discretization of the equation, the following matrix

problem is obtained

K’ C O H

c+ o z, M
o x,, ZJ J

vi
= o

0
(30)

It is noted that the matrix K’ can be viewed as mostly sparse, with the exception

of a subset associated with the edges lying on SW. Normally, the source edges

represent a very small number of the overall edges and the matrix is still

treated as sparse. Furthermore, Vi is the impressed field of the waveguide

fundamental mode.

B. Why Use a Scalable Massively Parallel Processor?
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The result of the above formulation and discretization  is the large,

sparse set of equations (21). The system has a block structure as pictured in

Figure 2; as noted above, the major expense involved in the solution of (21) is

an intermediate calculation that results in the system (23). l-he cost of this

calculation scales directly with the electrical size of the problem being

examined. By using a volumetric method, tetrahedral elements must be

generated to fill the volume at a density of approximately 20-30 elements per

wavelength—this results in 15, 000 tetrahedral per cubic wavelength when

there are 25 elements per linear wavelength. The number of columns in the C

matrix has a similar scaling relationship but one that is more tied to problem

geometry. It is envisioned that the number of elements needed to model

problems of interest in the aerospace field (such as electrical large wing

sections with coatings, or antennas mounted on or within electrically large

bodies) grows to several million, and pinnacle problems envisioned today

grow to several 10’s of millions of elements. When the coupling matrix entries

are included, the need for storage growing into 100’s of Gbytes  of memory is

needed and sustained floating point rates into 100’s of GFLOPS per second.

As outlined in the next section, these sustained rates are needed for

calculations involving data structures and sparse arithmetic that do not produce

performance rates (as do dense matrix algorithms) that are an appreciable

fraction of the machines peak rate. It is therefore necessary that the machine

peak rate be 5-10 times that of the above rate to achieve useful results.
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One key goal of simulation is to limit the number of physical models built

and the number of experiments conducted in the iterative engineering design

process. The above memory size and performance rates are needed to produce

turn-around times of designs that impacts this engineering development. The

scaling of larger and larger computer models with the increasing machine

capacity envisioned with future parallel systems is the driving force for using

massive parallel processors for these calculations. Increased fidelity on more

realistic models is the goal over the next few generations of hardware that will

become available.

IV. COMPUTATIONAL FORMULATION AND RESULTS

The solution of a large sparse system is the central component of the

finite element simulation. (The code described in this chapter is named

PHOEBUS.) Traditionally, the dependence between mesh data and the

resultant sparse matrix data has been exploited in the development of mesh

partitioning algorithms [6–9]. These algorithms break the physical mesh

graph into contiguous pieces that are then read into each processor

or its

of a

distributed memory machine. The mesh pieces are generated to have roughly

the same number of finite elements, and to some measure, each piece has

minimal surface area. Since the matrix assembly routine generates non-zero

matrix entries that correspond to the direct

(elements that do not physically touch do not

interconnection of finite elements

generate a matrix entry), the mesh

partitioning algorithm attempts to create a load balance of the sparse system of
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equations. Processor communication in the algorithm that solves the sparse

system is meant to be limited by the ability to minimize the surface area of each

mesh piece.

The algorithm for mesh partitioning typically requires less computational

time than the rest of the finite element simulation, but due to the complexity of

algorithms needed to create good load balance and minimal processor

communication, the development of parallel partitioning codes can be quite

expensive. The complexity results from the irregularity of mesh data inherent in

volumetric finite element modeling. The strategy followed in this application is

to exploit the availability of a global address space by using compiler

constructs to efficiently decompose the matrix data among processors of the

Cray T3D [10]. Because the amount of time needed to perform the matrix

decomposition is a small fraction of the overall simulation time, any minor

inefficiencies in using the shared memory compiler constructs are relatively

unimportant. The matrix equation solution—the major time expense of the

overall simulation—and the calculation of observable are accomplished using

message passing algorithms. This strategy allows the use of global

addressing constructs to simplify the high complexity but cornputationally

inexpensive portion of the simulation, i.e., the parallel finite element matrix

assembly from mesh data, and the use of message passing algorithms on the

portions of the simulation that require high performance. The direct

decomposition of the matrix entries also results in regular data structures that

are exploited by efficient communication patterns in the iterative solver.
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A. Constructing the Matrix Problem

Inthe electromagnetic scattering application considered in this chapter,

the system of equations under consideration is complex-valued, symmetric

and non-definite. Because the system has these properties, and because very

large systems are considered (systems up to order one-million) the quasi-

minimum residual iterative algorithm is used to solve the system [11]. Each

row (or column) of the matrix has a number of non-zero entries, typically sixteen

for the elements currently being used, and this number is constant,

independent of the mesh size. The main expense of the solution algorithm is

the sparse matrix-dense vector multiplication that is inherent in this as in most

other Krylov  subspace iterative algorithms. The matrix decomposition used in

this implementation is based on row slabs of the sparse reordered system.

The reordering algorithm is used to minimize the bandwidth of the sparse

system. This decomposition and reordering is chosen to minimize

communication of the overlapping vector pieces in the parallel matrix-vector

multiplication, reduce storage of the resultant dense vector pieces on each

processor, and allow for load balance in storage and computation.

Since the right-hand-side vectors in the parallel sparse matrix equation

(KX = C) are the columns of C, these columns are distributed as required by

the row distribution of K. When setting up the row slab decomposition, K is

split by attempting to equalize the number of non-zeros in each processor’s

portion of K (composed of consecutive rows of K). The rows in a given
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processors portion of K determines the rows of C that processor will contain.

As an example, if the total number of non-zeros in K is HZ, a loop over the rows

of K will be executed, counting the number of non-zeros of K in the rows

examined. When this number becomes approximately nZ / P (where P is the

number of processors that will be used by the matrix equation solver), the set of

rows of K for a given processor has been determined, as has the set of rows

of c.

The reordering is chosen to minimize and equalize the bandwidth of

each row over the system [12]. Because the amount of data communicated in

the matrix-vector multiplication will depend upon the equalization of the row

bandwidth, different reordering algorithms have

generalized reverse Cuthill-McKee algorithm (in both

been examined. The

the SPARSPAK [12] and

the Gibbs-Poole-Stockmeyer  [13] versions) produces an ordering that

minimizes system bandwidth, and equalizes the bandwidth over each row of

the matrix. Matrices resulting from objects that were

those resulting from spherical objects have been

dissection ordering in [9] could produce a smaller

long and thin, as well as

examined. The nested

profile of the reordered

matrix, but

bandwidths

matrix.

equalization of the row bandwidth was not accomplished; row

even approaching the matrix order were found in a few rows of the

The matrix decomposition code, termed P_ SLICE, consists of a number

of subroutines. Initially, the potentially large mesh files are read (READ). Then

the connectivity structure of the sparse matrix is generated and reordered
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(CONNECT), followed the generation of the complex-valued entries of K (FEM),

building the connectivity structure and filling the C matrix (COUPLING). Finally

the individual files containing the row slabs of K and the row slabs of C must

be written to disk (WRITE). For each processor that will be used in the matrix

equation solver, one file containing the appropriate parts of both the K and C

matrices is written.

Cray Research Adaptive FORTRAN (CRAFT) is used for the matrix

decomposition stage of the simulation.

CD/R$ directives to be shared in either a

the leading dimension, with non-leading

All large arrays are declared using

block manner or a cyclic manner for

dimension distributed degenerately.

Using a block distribution of a matrix of size 256 on 4 processors leads to the

first 64 elements residing on processor O, the next 64 elements on processor

1, etc. A cyclic distribution would lead to processor O having elements (1, 5, 9,

. ..). processor 1 having elements (2, 6, 10, . ..). etc. A two dimensional array with

a degenerate distribution of the second dimension leads to all elements of the

array having a given index in the first dimension being on the

regardless of the index in the second dimension. For

dimensional array of size (256,1 O) distributed degenerately

same processor,

example, a two

over the second

dimension will have elements ((i,l), (i,2), . . . . (i,l O)) all located on the same

processor. Which processor this will be is dependent on the value of i, and the

method of distribution over the first dimension.

Routines which could be easily parallelized by CRAFT directives were

FEM and part of COUPLING. The directive Cf)/R$  DO SHARED was added to
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the parallelizable  loops to automatically distribute the work over all the

processors. Other routines that could be executed in parallel with a

combination of CRAFT and message passing included the READ and WRITE

routines. The remaining routines (CONNECT, and a second part of

COUPLING) are basically sequential routines, where only one processor is

doing the majority of the work, while using data spread across many (usually

all) processors.

Two files are read in the READ routine, one containing finite element

data, and the other containing integral equation data. The finite element file is

at least an order of magnitude larger than the integral equation file, and is read

by 4 processors. By using these 4 processors, the time of the READ routine is

reduced roughly by a factor of 3 as compared to reading the file with

1 processor. Further reduction in this time may be possible; however, this

factor of 3 is currently sufficient. In the WRITE algorithm, data is assembled on

each processing element and written to disk. On the T3D, it is faster to

assemble a local array and write out that data than to write out a distributed

array directly, since as the number of processors increases, more writes of

smaller amounts of data are being performed, and disk and network contention

develops. Scaling beyond this point quickly leads to diminishing returns from

each processor.

F:igures  3 and 4 show the performance of P_SLICE over varying

numbers of processors for two different problems. The number of edges is the

number of finite element unknowns in the problem. [t may be observed that for
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the routines that have been parallelized, doubling the number of processors

reduces the amount of time by a factor of approximately two, For routines that

are sequential, where only one processor is doing the work using the other

processors’ data, the time goes up very slightly as the number of processors

for the overall code are increased. This is due strictly to communication

latency. As the number of processors increases, the percentage of array

elements which are not local increases, and the time to load or store these

elements is longer than the time to load or store local elements. The 1/0 time

should have roughly the same behavior, but for practical tests the 1/0 time is

more dependent on the 1/0 load of the other T3D processors and the load on

the front-end YMP that is between the T3D and the disks than the number of

T3D processors being used in P_SLICE. It is clear that the routines that benefit

most from the parallel implementation on the T3D are COUPLING and WRITE.
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Figure 3. Computation time and scaling for a relatively small

simulation (dielectric cylinder with 43,791 edges, radius = 1 cm,

height = 10 cm, permittivity = 4.0 at 2.5 GHz).  First column shows

time for single processor T90. Times on T90 for CONNECT and

FEM have been combined.
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F:igure 4. Computation time and scaling for a relatively

simulation (dielectric cylinder with 579,993 edges, radius =

2 5 6

arge

cm,

height = 10 cm, permittivity = 4.0 at 2.5 GHz).  First column shows

time for single processor T90. Times on T90 for CONNECT and

FEM have been combined.
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B. Beginning the Matrix Solution

As outlined above, the partitioned system of equations is solved in two

steps, namely P_SOLVE and P_FIELD. Initially the quasi-minimum residua

algorithm [11] is used to solve the sparse system of equations KX = C

resulting in the reduced sub-matrix z.. The parallel quasi-minimum residua

solver developed for this application operates on matrix data decomposed by

row slabs in P_SLICE  after reordering (Figure 5 shows matrix structure before

and after reordering). The machine is logically considered to be a linear array

of processors, with each slab of data residing in one of the processors. C and

X are also decomposed by row slabs, corresponding to the row partition of the

matrix. Central components of the quasi-minimum residual algorithm that are

affected by the use of a distributed memory machine are the parallel sparse

matrix--dense vector multiplication, and dot products and norm calculations that

need vector data distributed over the machine. The dominant component is the

matrix-vector multiplication, accounting for approximately 80% of the time

required to run P_ SOLVE.
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Figure 5. Original matrix structure (left) and after reordering (right).

Filled spots indicate non-zero entries of matrix.

A parallel library of the needed

using CRAY T3D shmemyut  and

level-one BIAS routines

shmem_get message

was developed

passing. The

routines required by the quasi-minimum residual algorithm are CDOTU and

SCNRM2, and the parallel implementation of these was trivial, consisting of a

local BLAS call to calculate each processor’s contribution to the result, and a

call to a global sum routine to calculate the final result.

Parallel Sparse-Matrix Dense-Vector Multiplication Formulation

l-he parallel sparse matrix-dense vector multiplication involves

multiplying the K matrix that is distributed across the processors in row slabs,

each containing a roughly equal number of non-zero elements, and a dense

vector x, that is also distributed over the processors, to form a product vector y,

distributed as is x (Figure 6). Since the K matrix has been reordered for

31



minimum bandwidth, the minimum and maximum column indices of the slab

are known, If the piece of the dense vector x local to this processor has indices

within this extent of column indices, the multiplication may be done locally and

the resultant vector y will be purely local. In general, the local row indices of the

dense vector x do not contain the range of column indices; therefore a

communication step is required to obtain the portions of the vector x required

by the column indices of the K matrix. This communication step only requires

data from a few processors to the left and right. The exact number of

processors communicating data is dependent on the row bandwidth of the

local piece of K, and the number of processors being used. In the simulations

considered, the number of processors communicating data is typically one or

two in each direction on scaled problems.

This communication could be performed using either shrnem_get  or

shmem~ut.  These are one-way communication calls where the processor

from whose memory the data is being gathered or to whose memory the data

is being stored, respectively, is not interrupted by the communication. The

shmem_gef  formulation is more intuitive and simpler to program, but the

communication bandwidth of the stvnem~ut  routine on the T3D is

substantially higher than the communication bandwidth of the shrnem_gef

routine. For this reason, the shmem~ut  formulation is used. This formulation

requires the cache to be flushed to maintain cache coherency, but the resulting

performance of the matrix-vector multiplication is still 15% higher than the

performance obtained using the shmem-_gef  formulation.
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Figure 6. Local sparse matrix-dense vector multiplication graphically displayed.

As described previously, the K matrix is stored in row slabs using row-

i s  e q u i v a l e n t  t o  a  c o l u m n  s l a b
A___________ _A ---- -n _m7: __. .— —-.:_L this

s t o r a g e .  K may be used in ei ther

uurrlpresseu swIaye. IWS n  I S  syrri[[wlll~,

d e c o m p o s i t i o n  u s i n g  c o l u m n - c o m p r e s s e d

w a y  i n  t h e  m a t r i x - v e c t o r  m u l t i p l i c a t i o n .  I n

r e q u i r e s  x(i)  t o  b e  o b t a i n e d ,  a n d  a  n o n - z e r o

this step, a non-zero in column i

in rowjwill  produce a partial result

for y~). This implies that K stored in column slabs will require only

communication of portions of y non-local to the processor after the local portion

of the multiplication, and similarly, K stored in row slabs will require

communication only to gather x before the local portion of the multiplication.

Since similar amounts of

scheme, the scheme that

chosen for implementation.

communication are required using either storage

minimizes the time spent in local work has been

This is the rc)w slab decomposition of K, because
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the row-compressed storage scheme better reuses the T3D processor’s local

cache, and therefore has better overall performance.

Parallel Sparse-Matrix Dense-Vector Multiplication Performance

The goal of the combination reorciering-partitioning  strategy discussed

above is to minimize as well as equalize communication in P_SOLVE, while

retaining memory load balance. The partitioning chosen clearly succeeds in

evenly dividing the data among the prcjcessors;  Figures 7 and 8 show the

relative communication time of the processors.
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Figure7.  Graph ofcommunication  load balance for parallel matrix vector

multiplication, 271,158 edge dielectric cylinder, 32 processors.

Figure 7 shows results representative of the majority of the cases that

have been run. All processors, excepting those on the ends of the linear

processor array, have a relatively similar amount of communication, and since

the communication is synchronized, all processors will require as much time

as the one that uses the most time. Only the two end processors will be idle

very long at the barrier. For this case, all processors except the first and last

have to communicate with two other processors, one to the left and one to the

right.

Figure 8 shows the other possible class of results, shared by a minority

of cases that have been run. Again, the two end processors are using less
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time for communication than the majority of processors. However, in this

example, a small subset of the processors are using more time in

communication than the average processor. All the processors except those in

this subset have to wait a substantial amount of time at the barrier, and the

speed per processor of this run is lower than that of the first example. Again in

this example, all processors but the first and last have to communicate with at

least two other processors, one to the left and one to the right, but here, the

processors in the subset that are spending more communication time are

communicating with possibly two processors in either direction. The issue in

these few cases is that the decomposition of the K matrix was performed

entirely based on storage load balance, with the assumption that the

reordering would equalize the row bandwidth and create communication load

balance. This assumption is generally valid, as shown in Figure 7, though not

always, as shown in Figure 8.
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Figure 8. Graph of communication Ic)ad  balance for parallel matrix vector

multiplication, 579,993 edge cylinder, 128 processors.

Another factor in the performance of the parallel matrix-vector

multiplication is the percentage of communication. This is mainly related to the

number of processors to the left and right that each processor must

communicate, and as discussed above, the maximum number that any

processor must communicate with. It is clear that running a fixed size problem

on an increasing number of processors will generate a growing amount of

communication. The amount of communication is a function of how finely the
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K matrix is decomposed, since its maximum row bandwidth after reordering is

not a function of the number of processors used in the decomposition. If the

maximum row bandwidth is m and each processor in a given decomposition

has approximately m rows of K, then most processors will require one

processor in each direction for communication. If the number of processors

used for the distribution of K is doubled, each processor will have

approximately m/2 rows of K. Since the row bandwidth doesn’t change, each

processor wil l now require two processors in each direct ion for

communication. But since the number of floating point operations required

hasn’t changed, the communication percentage should roughly double. This

can be seen in Figure 9, which shows communication percentage versus

number of processors, for four problem sizes.
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Figure 9. Percentage of communication versus number of processors

for parallel matrix vector multiplication, for four different size (number of

edges) meshes of dielectric cylinder.

F:igure 10 shows the local rate of operations/second for the parallel

matrix vector multiplication. It is measured after communication has been

completed. It can be seen that the performance of this operation is roughly

constant, and is not easily identifiable as a function of problem size or number

of processors. To a limited extent, a problem which involved more data on

each processor will run slightly faster than would a problem with less data on

each processor, but as Figure 10 demonstrates, this isn’t necessarily true.
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The storage of the data and how it fits in the T3D’s cache is more important

than the amount of data, and this forces the local performance rate not to be a

simple function of problem size per processor.

Shown in Figure 11 are plots of time to convergence on different

numbers of processors for five different problems. The number of unknowns in

the finite element mesh and the number of columns of C are indicated on the

plots. The quasi-minimum residual algorithm was stopped when the

normalized residual was reduced three orders of magnitude for each column of

C. With an initial guess being the zero vector, this results in a normalized

residual of 0.1 Yo, a value that is sufficient for this scattering problem. Given a

fixed communication percentage and a fixed rate for local work, doubling the

number of processors for a given problem would halve the total solution time.

The curves in Figure 11 do not drop linearly at this rate because these

assumptions are not met, as shown by Figures 9 and 10. The decreased

amount of work per processor causes the curves to level off as the number of

processors increases.
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matrix vector multiplication, for four different size (number

meshes of the dielectric cylinder.

256

for parallel
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Additional Work in P_SOLVE

After each column of K-’C  is computed using the quasi-minimum

residual algorithm, it must be multiplied by C+ to obtain the equivalent column

of z., Each of these multiplies requires a global communication, since c is

distributed over the T3D by row slabs. To reduce the number of global

communications, after a number of columns of K-lC are computed, these are

multiplied by C+, and the columns of z. obtained are written out sequentially to



disk. The original quasi-minimum residual algorithm solved a single solution

vector at a time. A pseudo-block (multiple right-hand-side) quasi-minimum

residual variant was written, which performs each quasi-minimum residual

iteration on some number of columns of C simultaneously. As the residual of

each column of K-JC converges below the threshold, that column is no longer

used in the quasi-minimum residual algorithm. This variant performs the

same number of floating point operations as the single right-hand-side quasi-

minimum residual algorithm, but the K matrix is required to be loaded from

memory much less often. This leads to a time savings of 10–15% in

P_SOLVE.
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Figure 11. Time of convergence for five different problems. The time

shown is the total execution time for the solver on different numbers of

processors. The C matrix has 116 columns in each case.

C. Completing the Solution of the Matrix Problem

The final code of the simulation, P_FIELD, completes the matrix

calculation shown in Equation (23) and computes observable quantities (radar

cross section, near fields, etc.) After the ZN1, Z~ and ZO sub-matrices and JIi

vector(s) are computed, and the sub-matrix z. (formed by P_SOLVE) is read in

from disk, a parallel dense matrix LU decomposition algorithm is used to solve
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the reduced system [14]. Since this system is much smaller than the larger

sparse system solved above, the Z matrices may be distributed on a smaller

set of processors, chosen to optimize the solve time. The time needed to solve

this system compared to the sparse system is a small fraction, typically less

than IYo.

The radar cross section is founcl from the mesh surface equivalent

currents ~- and ~. This calculation—an integral over the surface—is easily

parallelized on the processors executing P_FIELD. If the radar cross section

for more than one excitation vector is needed (monostatic), a block of solution

vectors are found, and a block of radar cross sections calculated.

D. The Three Stages of the Application

Shown in Figure 12 is the comparison of time requirements of the three

stages of the simulation, for four different problem sizes. The problem

simulated corresponds to the dielectric cylinder outlined in previous results. As

is clearly shown, the dominant component of the simulation is P__SOLVE—the

iterative solution of the sparse system. The matrix decomposition stage

(P_SLICE)  is relatively small, while the observable calculation stage (P_FIELD)

is a minor fraction of the total time. This last stage can grow if a large number

of field calculations are required, but it will typically remain a small fraction of

the matrix solution time.
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Figure 12. Comparison of time requirements for three stages of simulation for

four different sizes of cylinder problem.

v. RESULTS FOR RADAR SCAITERING AND ANTENNA MODELING

Scattering results for various geometries can be

section presents results for scattering from anisotropic

found in [3]. This

materials, and for

radiation from patch antennas.

A. Anistropic Scattering

Anisotropic  materials find application in electromagnetic scattering for

coatings applied to targets, or in applications where specific magenetic

materials are present. While there is little in the software implementation that
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is unique to the combination of anisotropic  materials and parallel computing,

high-performance computing enables simulations of scattering and antenna

problems that involve anisotropic  materials and also have electrical sizes in the

range of interesting problems. Thus it is interesting and practical to ensure

that a high-performance parallel system performing electromagnetic scattering

and radiation problems also handles anisotropic materials accurately.

As outlined in Section 1, the PHOEBUS software solves Maxwell’s

equations within the volume represented by the finite element mesh by the

weak-form volumetric integral in (l). This formulation enforces strict tangential

continuity of the primary modeled field at material boundaries, while also

weakly enforcing normal continuity of the flux (in an average sense over the

facets). This combination of conditions is well suited to anisotropic  materials.

Since we are solving frequency-domain systems, we are restricted to linear,

memory less, but generaI anisotropic materials. Chiral and other bianisotropic

materials are not supported.

The cases of an anisotropic  principal-axis dielectric material surrounded

by air, a radial-oriented anisotropic sphere, and an idealized gyrotropic  material

considered as a cavity-mode problem have been implemented and numerically

verified. This latter case establishes the applicability of the finite element

method used in PHOEBUS to gyrotropic materials, but was performed using

separate software to solve the associated eigensystem.

Several questions of suitability were considered and answered by these

test cases. Does the element-by-element weak-form integral result in stable
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solutions to anisotropic  problems without introducing vector parasite error? In

particular, are the solutions continuous within materials, and do they display

the correct discontinuities at the material boundaries? Do solutions within

principal axis dielectrics display the correct divergence characteristics? This

was particularly in doubt because it is well known that low-order edge

elements imply basis functions that are entirely divergence-free within each

element volume, while fields within principal axis dielectric volumes must be

permitted to diverge; if we are primarily modelling E, then VOW= O but V*ELO,

For gyrotropic materials, we have tested the accuracy of the

representation for finding resonant frequencies and modes in a cavity problem.

This allows systematic high-order testing of the modeling physics and

demonstrates in particular the behavior with respect to spurious modes. Such

modes, corresponding to extrapolated behavior at the zero-frequency limit,

appear to be at the root of vector parasite problems in some alternative

implementations that use node-based basis functions.

Principal axis anisotropy is incorporated in the weak-form finite element

equation by direct substitution of the tensors for & and/or p. These tensors are

fully specified by the three principal components, for example El, E2 and ES, plus

a rotation matrix R that specifies the material principal axes as unit vectors in

the global Cartesian coordinate system. Thus

[1

E, o 0
&=R o E2 o ~1’

OOE3 (31)
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and

(32)

A variation is spherical anisotropy, for which every finite element volume

in a sphere is assigned the same uniaxial  material for which Q = &~,, PZ =PS

and R is constructed separately for each element so that the first principal axis

is aligned with the radius vector (the vector from the sphere center to the

element centroid). This forms a good approximation to a continuous

spherically anisotropic  material. For this case the specification for a material is

complete when El, &2 , p], pz and the coordinates of the sphere center are

specified.

For gyrotropic materials,

we have used p of the form

we have neglected loss and dispersion. Thus

/1 =

1 0 0 PM

permeability (usually pl I= PZZ= p~~ = 110), while x

tensor due to magnetization.

The first anisotropic  test case consists of

(33)

p denotes the unbiased

denotes the susceptibility

a thin dielectric slab with

differing dielectic along one principal axis (Figure 13). The principal axis
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relative dielectric constant (4.0) and propagation direction thickness (A//4) were

chosen for these test cases because of the interesting property of the

corresponding infinite transverse thickness slab: polarization may be converted

from linear to circular. As the linearly polarized wave from the left reaches the

slab, it is conceptually split into two components, one along each of the

principal axes ~ and z’. The ~ component sees a quarter wavelength of free

space, while the z’ component sees a half wavelength of dielectric constant 4.0.

Each component has perfect transmission (no reflection); but the z’ wave exits

90° ahead of the y’ component. Thus incident linear polarization results in

emitted circular polarization. With a 1x1 wavelength slab, this property is only

partially emulated, yet clearly shows the effects of the material anisotropy. A

comparison is made of the fields along the propagation axis with respect to a

solution by finite difference simulation on a uniform mesh of parallelpipeds.

The results for the two field polarizations show excellent agreement (Figure 14)
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Figure 14. Electric field along propagation direction through center of

slab of Figure 13. Top: magnitude and phase of total field component

with polarization parallel to the incident electric field vector. Bottom:

same, with cross-polarization component of total electric field.

The comparisons made to date indicate that the standard mesh density

rules (8-16 elements per wavelength in each medium) is adequate for
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anisotropic  substances. Concerns for modeling the physically non-zero

divergence in anisotropic  objects by using edge elements have proved

groundless: the elements support divergence as generalized functions at the

mesh facets. That is, the total volume divergence over a cluster of finite

element domains (i.e., the surface flux by Gauss’ theorem) need not be zero,

even though it is point-wise zero over each element interior. The paradox is

resolved by recognizing that the divergence is supported at the facets between

each adjoining pair of elements, in a generalized function sense. Essentially

the normal component of the field is a step-function at the facet, hence the

divergence is carried by a delta function at that point. Furthermore, the

accuracy of the field treatment at dielectric interfaces is shown to be adequate

and automatic. This edge-element conformability is shown to work for

anisotropic-to-isotropic  dielectric interfaces, as well as isotropic-to-isotropic

dielectric interfaces.

A second anisotropic  dielectric test case is a radially anisotropic  sphere.

Figure 15 shows the bistatic cross-section for several values of El and Sz. : 1) a

Iossy  isotropic sphere with SI = E2. = 4- 0.5i., 2) E1 = 4- 0,5i.,  E2. = 2 (radially

Iossy),  and 3) &j = 2, E2. = 4- 0.5i (tangentially Iossy).  All displayed cross-

sections show reasonable agreement to those of Taylor [15, Figures 7

and 8].
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Figure 15. Bistatic  cross sections for anisotropic  spheres with

radial, tangential relative dielectric values as shown.

The gyrotropic cavity problem consists of a height to radius ratio of 2,

PEC cylinder filled with idealized gyrotropic material. The gyrotropic  material
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constants are pjj’ = 1.0, p22’ = 1.0, X12 = O.li.  This problem has an analytic

solution, and has also been solved as a 2-D body of revolution finite element

problem [16]. The degrees of freedom corresponding to electric fields tangent

to PEC facets are eliminated from the matrix storage data structures. The finite

element matrices for the eigenvalue problem corresponding to the cavity

modes are R (resulting from the curl-curl term) and S (resulting from the direct

field overlap integrals), with coefficient (eigenvalue)  k2. The resulting system, R

— kz S = O, represents a modified eigenvalue  problem, which was solved by

EISPACK  subroutines.
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We computed eigensolutions  to our 3-D finite element matrices (Figure

16). The conducting ferrite-filled cylinder displays eigenvalues for modes in

close agreement with those predicted analytically and found by the BOR

technique from [16]. The eigensolver also finds 190 k = O modes (for the case

with 190 interior finite element vertices), representing the space of functions

E = grad(f) (for any arbitrary scalar function ~ that satisfy the curl-curl equation

for k=O. The numerical eigenvalues imply k < 10-2 for all of these modes,

demonstrating superb separation between these mathematical modes and the

physical modes that have nonzero k.
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Figure 16. Ferrite cavity geometry and comparison of resonant

frequencies computed analytically, by BOR finite element code

and by 3-D gyrotropic prototype code

Additional validation was obtained by examining interpolated plots and

animations of the interior fields on crcms-sections  of the ferrite-filled cylinder.

These were not directly compared with analytic or computational solutions, but

demonstrate whether the mode-structure agrees with that predicted by the

analytic solution, for example in number and type of field nodes, and the

splitting of the circular polarized modes (in a ferrite, circular modes of opposite

handedness have different eigenvalues, in contrast to the degenerate modes

in empty space). The first 14 modes were examined, and found to agree with

the predicted mode structures and polarizations.

The quality of the results for the eigensystem indicate we may use

gyrotropic materials in PHOEBUS with high confidence. Spurious modes are

well behaved, and therefore vector parasitic errors should be absent.

B. Patch Antennas—Modeling Conformal Antennas With PHOEBE

Antenna modeling is accomplished using a variant of the PHOEBUS

software named PHOEBE. As noted above, the major modification is that the

source is now internal to the mesh which results in the linear system (30). The

solution of this linear system is performed similarly to that of the scattering

problem outlined above.
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To simulate antennas mounted conformably on curved platforms, an

array of four patches laying on top of the lateral surface of a metal cylinder and

backed by a cavity, as illustrated in Figure 17 was modeled. Note that the

metal patches and the cavity have the same curvature as the cylinder, thus

providing perfect match of the two structures, without protrusion. Similarly, the

back of the cavity is curved so that the thickness is maintained constant at 0.25

cm. The dimension of the rectangular patches and their placement with

respect to the cavity is illustrated in Figure 17c. The radius of the cylinder is 10

cm and its height is 50 cm. The cavity is placed symmetrically about the

middle of the platform.

A coaxial cable feeds the right-bottom patch only, while the others act as

isolated parasitic elements. The higher order mode (2,0) was excited,

occurring near the frequency of 4.6 GHz. A detail on how the coaxial cable

attaches to the patch and the cavity is presented in cross section Figure 17d.

PHOEBE requires a piece of cable to be modeled with a fine-elements mesh,

up to a truncation surface, transverse to the waveguide axis, where the mesh

is terminated by imposing that the modal waveguide representation pertinent

to the feed geometry be consistent with the finite elements solution. In this

specific case a cable length of 1 cm protruding out from the back of the cavity

was included in the finite element model. The actual size of the coaxial cable

is not critical; in fact one can always adjust the permittivity value of the insulator

to achieve the desired characteristic impedance. In meshing the coaxial cable

region, we find it useful to avoid very small values for the inner and outer radii,
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a n d  minimize the amount  of  mesh needed in  th is  region.  B e c a u s e  t h e  c a b l e

transitions into a much larger structure – the volume of the patch – the mesh

generator, in trying to obtain a transition between different edge lengths, tends

to generate an unnecessarily large number of elements in the transition

region.

The cylindrical platform is imagined to be surrounded by air, and we

mesh a uniform layer of thickness 0.8 cm enclosing the structure, as

illustrated in Figure 17e. This choice allows for a two-element thick mesh,

which is desirable for accuracy. Additionally, we mesh the cavity and the

coaxial cable stub. At the frequency of interest the electrical size of the cylinder

is about 8 k x 3.3 1, With a nominal edge length specified to be l/20th of the

wavelength in both air (outer layer) and dielectric (cavity + feed), the number of

finite elements in this mesh is 260,000, corresponding to 300,000 edges.
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Figure 17. Geometry of conformal patch antenna,

To determine the number of Fourier modes necessary to model the

radiated fields accurately, one needs to investigate the expected behavior of
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the fields in and around the four patches. Noting that this is not simply a

scattering problem, it is expected that some of the smallest physical

dimensions present in the patch geometry, such as the azimuthal distance of

1 cm between the patches, will play a role in establishing patterns of

interference varying with this scale. Based on the electrical size of the cylinder

alone, at least 11 Fourier modes are required, that is to say all the modes with

index between -11 and +11.  In reality several more are needed, based on the

antenna geometry, and we included up to 20 in the region around the cavity,

tapering off as we moved along the generator away from this active region. The

current coefficients for M and J constituting the solution of the matrix problem

are illustrated in Figure 18, where the abscissa represents the right hand side

(column of the C matrix) associated with one particular triangle (t or $

polarization) and Fourier series component. One can clearly see that the

contribution to the solution of modes up to +/-15 i s  s ign i f i can t .

Correspondingly, the radiation pattern (shown in Figure 19) is consistent with

that of a patch antenna, excited in the mode (2,0). The slight asymmetry in the

main lobes of the E-field pattern is attributed to the parasitic effect.

Additionally, the calculated input impedance is plotted in Figure 20, and the

tangential magnetic fields (phi component) calculated from the solution

coefficients on the outer (truncating) lateral surface is shown in Figure 21. It is

noted that the field pattern is consistent with the patch mode and that the

parasitic effect is rather pronounced for the lower left patch but it is rather small
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for the two upper patches, which is to be expected for the chosen excitation

mode.
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With our choice of triangles and modes along the generator, the

resulting C matrix has about 2500 columns, as shown in Figure 18. We ran

this problem on 128 processors of the Cray T3D and it took about 9.5 hours to

complete. Most of this time, 8.3 hours, was taken up by the QMR solver on the

2,500 right hand sides of the C matrix. The solve stage was completed in

multiple code runs, employing the restart feature of our QMR implementation.

By comparison, filling the 5,000 x 5,000 dense matrix took about 40 minutes. A

communication percentage time of slightly less than 5% was observed.
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Figure 20. Phi component of magbetic field on surface of revoultion

boundary for conformal patch antenna.

V1. SUMMARY AND FUTURE CHALLENGES

This has chapter described the motivation, formulation and

implementation of a finite element method for the calculation of

electromagentic  fields using massively parallel processors. Key points of this

work include a) an efficient implementation of a surface of revolution integral

equation for coupling the exterior radiation boundary condition to the

computational mesh, b) the use of a matrix decomposition onto the processors

that differs from mesh decomposition strategies, c) the development of a

parallel quasi-minimum residual iterative algorithm for distributed memory

massively parallel computers, and d) the extension of the parallel scattering

code to antenna modeling. From this experience, two areas stand out as future

challenges—mesh generation and more efficient sparse matrix equation

solvers.

The mesh generation stage involves creating the computer description

of the geometry and a mesh of the region in and about the scatterer or antenna.

For target sizes that require millions of elements, this is a daunting process.

The mesh is generated in the region containing penetrable materials and out

to the minimal surface of revolution surrounding the target or antenna.

Creating elements of relatively uniform shape that conform to the targets

geometry and have the necessary density is a difficult task. Additionally, it is
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difficult to assess the quality a mesh after it has been generated with millions

of elements. One possible approach for improving this situation is to apply

adaptive mesh refinement strategies that allow a very coarse initial mesh to be

generated, with refinement being automatically performed within the finite

element code [17].

The second challenge involves creating sparse matrix solution

algorithms that are efficient for many thousands (or more) of right-hand-sides.

If an iterative solver is used, convergence should be relatively uniform for all

right-hand-sides, and on a parallel machine the solver should maintain

load balance as well as minimal communication as the problem size g

The solver outlined in this chapter uses a matrix decomposition by ‘---
I Uvl

data

Ows .

-slab

partitioning following reordering that produces data structures that

allow a balanced matrix-vector multiplication in the iterative solver.

generally

The data

load balance was almost exactly uniform, while the communication overhead

was moderately small and similarly uniformly balanced over the machine for

the majority of problems considerecl. For scaled-sized problems, the

communication time was at most 15% of the total matrix-vector multiplication

time. Even bringing this percentage dcjwn to zero would not lead to a major

improvement in the overall performance of the code. However, major

improvements are possible in two areas: the local multiplication and the

number of quasi-minimum residual iterations.

First, the performance of the local portion of the sparse matrix-dense

vector multiplication could be improved. This is dependent on the sparse data-
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storage structure of the matrix and how it is loaded into the local cache. The

relative sparsity of the reordered row slab of the matrix causes the

multiplication to jump around in the cache as it loads the elements of the X

vector. If these local row slabs were reordered in such a way as to obtain a

more dense matrix, the local performance could increase dramatically.

Second, an efficient parallel preconditioned, or block iterative solver could

decrease the number of iterations needed in the matrix equation solution.

Naturally, the preconditioned must not increase either the overhead in setting

up the problem or obtaining the final solution more than it saves by lowering

the iteration count. The block solver also must not increase the time per

iteration more than the amount it saves by lowering the iteration count.
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